Diplomado en Big data y machine learning


Construye soluciones inteligentes utilizando las técnicas y algoritmos más modernos de machine learning, ocupando los enormes volúmenes de datos que se generan diariamente.

Matricúlate Aquí Comparar

Diplomado en Big data y machine learning


Construye soluciones inteligentes utilizando las técnicas y algoritmos más modernos de machine learning, ocupando los enormes volúmenes de datos que se generan diariamente.

Matricúlate Aquí Comparar

Diplomado en Big data y machine learning



* El inicio de clases puede estar sujeto a cambio

Matricúlate ahora y obtén un
35% dto.

(Precio final USD $1.560)

Quiénes Somos

Clase Ejecutiva UC es el programa de perfeccionamiento profesional Online + Zoom de la Pontificia Universidad Católica de Chile, orientado a actualizar tus conocimientos y entregarte nuevas herramientas y habilidades que te permitirán mejorar, ampliar e incluso transformar tu carrera profesional.

Descripción

El Diplomado en Big data y machine learning de Clase Ejecutiva UC aporta los conocimientos para construir soluciones inteligentes utilizando las técnicas y algoritmos más modernos de machine learning. Todo ello, al utilizar los enormes volúmenes de datos que se generan diariamente.

Ciertamente, los avances tecnológicos de esta era tienen como gran protagonista a la inteligencia artificial. Día a día es posible encontrar información de nuevos logros en este campo que parecen sacados de libros de ciencia ficción. En buena medida, ello se debe a los espectaculares avances de los algoritmos y técnicas de machine learning (deep learning, reinforced learning). Estos permiten construir aplicaciones impresionantes en áreas como el reconocimiento visual. A su vez, el notable desempeño de estos algoritmos se debe a que ahora gracias a las técnicas de big data pueden entrenarse con volúmenes gigantescos de datos.

La metodología del Diplomado en Big data y machine learning es 100% online. Y cuenta con una moderna plataforma de aprendizaje.

 

Objetivos

Conocer la problemática de big data, las plataformas más importantes y las técnicas que permiten manejar esa data.

Conocer las principales aplicaciones de ciencia de datos y machine learning.

Comprender e implementar los principales algoritmos de machine learning usando el lenguaje Python.

Presentar visualmente grandes volúmenes de datos en forma efectiva.

Dirigido a

Profesionales que necesiten adquirir las competencias necesarias para construir aplicaciones de big data y machine learning usando las herramientas del ecosistema Python e interesados en ciencia de datos que deseen adquirir habilidades para interactuar y visualizar volúmenes grandes de datos.

Metodología 100% Online

Aprendizaje interactivo

Contamos con una plataforma interactiva que te permitirá participar de las clases en vivo, interactuar en foros con tus compañeros de clase y acceder a los contenidos de cada curso en cualquier momento, adaptándose a tus necesidades.

Material de estudio

Desde el inicio de tu programa online, tendrás acceso al material de estudio necesario para cada clase. Podrás acceder en cualquier momento y en cualquier lugar a tus clases online, papers, videos y otros recursos.

Clases en Vivo

Cada curso está organizado en 6 a 8 clases online y una clase en vivo, transmitida vía streaming, realizada por nuestros destacados académicos o tutores. En esta clase podrás interactuar, realizar preguntas y comentar a tus compañeros de clase.

Acompañamiento de tutores

En cada curso tendrás un tutor académico quien resolverá tus dudas planteadas en la plataforma online. Además las coordinadoras académicas resolverán tus consultas administrativas a través del correo alumnosuc@claseejecutiva.cl

ACLARA TUS DUDAS

Quisimos responder las preguntas que muchos nos hacen a través de este video.

Malla académica




Curso Técnicas de big data para machine learning
Profesor:  

Gabriel Sepúlveda, Ph.D (c) Pontificia Universidad Católica de Chile Ver más...

Iván Lillo, Doctor Pontificia Universidad Católica de Chile Ver más...

Plan de estudios

Clase en vivo

Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, relacionados con el uso del ambiente de desarrollo Google Colaboratory, con la instalación de herramientas Hadoop y Spark o con la utilización de la API para el almacenamiento y procesamiento de big data.

Trabajo individual

Los alumnos deben aplicar los conocimientos aprendidos en tres trabajos o pequeños proyectos concretos, los cuales tendrán por objetivo aplicar de forma práctica las técnicas y herramientas para el manejo de big data. En particular, se enfocan en el uso del ecosistema Hadoop, del framework Spark y su biblioteca para machine learning Spark MLLIB, y de herramientas prácticas para visualización de datos. El último proyecto suele tener características integradoras y, por lo tanto, es un poco más largo y completo que los anteriores. Aun cuando el trabajo se entrega en forma individual y no grupal, los alumnos pueden conversar y discutir sobre sus ideas de soluciones con sus compañeros, antes de desarrollar y entregar el proyecto.

Contenidos

Ecosistema Hadoop
  • Introducción a big data
  • Instalación de herramientas Hadoop
Herramientas de Ecosistema Hadoop
  • Hadoop MapReduce
  • Apache Hive
  • Apache Pig
Apache Spark
  • Programación en Apache Spark
Data Analytics con Apache Spark
  • Apache Flume
  • Spark Streaming
  • Spark SQL
Machine Learning con Apache Spark
  • Spark MLLIB: algoritmos supervisados
  • Spark MLLIB: algoritmos no supervisados
Técnicas de visualización
  • Reducción de dimensionalidad

Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.

Curso Visualización de información en la era del big data
Profesor:  

Denis Parra Santander, Ph.D University of Pittsburgh (EE.UU.) Ver más...

Hernán Valdivieso, Magíster, Pontificia Universidad Católica de Chile Ver más...

Plan de estudios

Clases en vivo

Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, la correcta instalación de herramientas de software, el uso apropiado de algunas herramientas, etc.

Para este curso se revisarán formas de interpretar y aplicar del modelo anidado de visualización para validar visualizaciones existentes y para justificar decisiones de diseño de nuevos gráficos de visualización de información. Se revisarán y aplicarán bibliotecas en Python especializadas en visualización. Y con participación de los alumnos se analizarán casos de visualización.

Trabajos individuales

Los participantes deben aplicar los conocimientos aprendidos en tres trabajos o pequeños proyectos concretos. La primera actividad práctica requiere utilizar los conceptos de visualización para evaluar y validar diseños de visualización de información ya existentes. La idea es poner en práctica la relación entre tipos de datos y datasets, tareas, así como conocer las marcas y canales más apropiados para codificar información visualmente. La segunda actividad práctica tiene como propósito implementar visualizaciones mediante programación. Se establecen tres casos con datasets y codificaciones objetivo, con lenguage Python y usando las bibliotecas Pandas, Matplotlib y Seaborn.

El último proyecto suele tener características integradoras y, por lo tanto, es un poco más largo y completo que los anteriores. Aun cuando el trabajo se entrega en forma individual y no grupal, los alumnos pueden conversar y discutir sobre sus ideas de soluciones con sus compañeros, antes de desarrollar y entregar el proyecto. De esta forma, la tercera actividad de aplicación requiere una integración de conceptos de visualización y de implementación en Python. Dado un dataset y un caso de estudio, el estudiante analiza un dataset y provee respuestas a ciertas preguntas a través de la implementación de diferentes visualizaciones. En el proceso, se justifican las decisiones de codificación visual (gráfico, colores, etc.) y del espacio de diseño en general.

Contenidos

Introducción a visualización de Información
  • Ejemplos históricos de visualización de datos
  • Conceptos fundamentales de visualización de información
  • Percepción visual
  • Funciones básicas de Matplotlib y Seaborn.
Modelo anidado de Munzner para diseño y validación de visualizaciones
  • ¿Qué? Datos y datasets
  • ¿Por qué? Tareas de visualización
  • ¿Cómo? Codificación visual
  • Reglas y recomendaciones generales para visualizaciones efectivas
Diseño e implementación de gráficos simples para datos tabulares usando modelo anidado
  • Gráfico de barras y barras apiladas
  • Gráfico de puntos y de líneas
  • Gráfico de dispersión y de burbujas
  • Gráfico de flujos
  • Histogramas, gráficos de caja y de violín
Diseño e implementación de gráficos avanzados para datos tabulares usando modelo anidado
  • Múltiples ejes, gráficos radiales y de torta
  • Matriz de gráficos
  • Pequeños múltiples
  • Mapa de calor
  • Reducción de dimensionalidad lineal y no lineal
Diseño e implementación de gráficos para datos de red usando modelo anidado.
  • Conceptos de red, grafos y árboles
  • Diagramas nodo-enlace
  • Matrices de adyacencia
  • Gráficos tipo encierro
  • Clustermap
Visualización en diversos dominios de aplicación
  • Introducción a la visualización en diversos dominios y a storytelling
  • Visualizacion espacial y espacio-temporal
  • Visualización de colecciones de documentos
  • Visualización de vectores de palabras

Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.

Curso Python para machine learning
Profesor:  

Francisco Pérez Galarce, Ph.D (c) Pontificia Universidad Católica de Chile

Plan de estudios

Clase en vivo

Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, la correcta instalación de herramientas de software y el uso apropiado de algunas herramientas, además de apoyar el desarrollo de casos de estudio. Con estos últimos, se busca que los alumnos se vean enfrentados a situaciones más cercanas a la realidad, recorriendo las distintas etapas de los proyectos de machine learning.

Trabajo individual

Los alumnos deben aplicar los conocimientos aprendidos en tres pequeños proyectos cuyo objetivo es reforzar el aprendizaje teórico de las clases lectivas. El primer proyecto se focaliza en aplicar herramientas de preprocesamiento y visualización de datos. Los siguientes tienen características integradoras de preprocesamiento y aplicación de modelos de machine learning tanto en su versión supervisada como no supervisada.  Aun cuando el trabajo se entrega en forma individual y no grupal, los alumnos pueden conversar y discutir sobre sus ideas de soluciones con sus compañeros, antes de desarrollar y entregar el proyecto.

Contenidos

Introducción al Aprendizaje de Máquinas con Python
  • Introducción al aprendizaje de máquina
  • Tipos de problemas en aprendizaje de máquina
Preprocesamiento de datos con Python
  • Introducción a librerías del ecosistema de data science
  • Tipos de variables
  • Análisis descriptivo de variables
  • Transformación de variables
  • Visualización de variables
  • Imputación de datos
Regresiones
  • Aprendizaje supervisado
  • Regresión lineal
  • Regresiones polinomiales
  • Regresión con penalización
  • Regresión logística
Aprendizaje supervisado
  • Naive Bayes
  • Evaluación de clasificadores
  • Árboles de decisión
  • Random Forest
  • Random Forest para regresión
Redes neuronales
  • Introducción a las redes neuronales artificiales
  • Tecnologías para desarrollo de redes neuronales artificiales
  • Redes neuronales artificiales
Aprendizaje no supervisado
  • Aprendizaje no supervisado
  • K-Means
  • Cluster jerárquico
  • Evaluación de clusters
  • Reducción de dimensionalidad

Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.

Curso Técnicas de big data para machine learning
Profesor:  

Gabriel Sepúlveda, Ph.D (c) Pontificia Universidad Católica de Chile Ver más...

Iván Lillo, Doctor Pontificia Universidad Católica de Chile Ver más...

Plan de estudios

Clase en vivo

Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, relacionados con el uso del ambiente de desarrollo Google Colaboratory, con la instalación de herramientas Hadoop y Spark o con la utilización de la API para el almacenamiento y procesamiento de big data.

Trabajo individual

Los alumnos deben aplicar los conocimientos aprendidos en tres trabajos o pequeños proyectos concretos, los cuales tendrán por objetivo aplicar de forma práctica las técnicas y herramientas para el manejo de big data. En particular, se enfocan en el uso del ecosistema Hadoop, del framework Spark y su biblioteca para machine learning Spark MLLIB, y de herramientas prácticas para visualización de datos. El último proyecto suele tener características integradoras y, por lo tanto, es un poco más largo y completo que los anteriores. Aun cuando el trabajo se entrega en forma individual y no grupal, los alumnos pueden conversar y discutir sobre sus ideas de soluciones con sus compañeros, antes de desarrollar y entregar el proyecto.

Contenidos

Ecosistema Hadoop
  • Introducción a big data
  • Instalación de herramientas Hadoop
Herramientas de Ecosistema Hadoop
  • Hadoop MapReduce
  • Apache Hive
  • Apache Pig
Apache Spark
  • Programación en Apache Spark
Data Analytics con Apache Spark
  • Apache Flume
  • Spark Streaming
  • Spark SQL
Machine Learning con Apache Spark
  • Spark MLLIB: algoritmos supervisados
  • Spark MLLIB: algoritmos no supervisados
Técnicas de visualización
  • Reducción de dimensionalidad

Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.

Jefe de programa

Diplomado en big data y machine learning, curso machine learning, ciencia de datos, curso machine learning, big data, Clase Ejecutiva UC
Jaime Navón Cohen

Ph.D University of North Carolina at Chapel Hill (Estados Unidos)

Jaime Navón Cohen es Ph.D Computer Science, University of North Carolina at Chapel Hill (EE.UU.). Además tiene un Master of Science, Technion-Israel Institute of Technology (Israel). Es ingeniero civil electricista, Pontificia Universidad Católica de Chile (UC).

Asimismo, es profesor asociado del Departamento de Ciencia de la Computación de la UC.

 

Profesores

Denis Parra Santander
Denis Parra Santander

Ph.D University of Pittsburgh (EE.UU.)

Denis Parra Santander es Ph.D Computer Science, University of Pittsburgh (Pensilvania, EE.UU). Además, es ingeniero civil en Informática, Universidad Austral de Chile. Actualmente, se desempeña como profesor asociado del Departamento de Ciencia de la Computación de la Pontificia Universidad Católica de Chile.

Francisco-Pérez Galarce
Francisco Pérez Galarce

Ph.D (c) Pontificia Universidad Católica de Chile

Francisco Pérez Galarce es Ph.D (c) in Computer Science, Pontificia Universidad Católica de Chile. También es magíster en Gestión de Operaciones e  ingeniero civil industrial, Universidad de Talca. Es Head of Advanced Analytics en BRAVE UP!

Gabriel Sepulveda Villalobos
Gabriel Sepúlveda

Ph.D (c) Pontificia Universidad Católica de Chile

Gabriel Sepúlveda es Ph.D (c) en Ciencias de la Ingeniería área Ciencia de la Computación, Pontificia Universidad Católica de Chile (UC). Además, es ingeniero civil electrónico, con mención en Control Automático y Mención Complementaria en Computadores, Universidad Técnica Federico Santa María (Chile). Se desempeña como profesor instructor del Departamento de Ciencia de la Computación, Escuela de Ingeniería de la UC.

Hernán Valdivieso

Magíster, Pontificia Universidad Católica de Chile

Hernán Valdivieso tiene un Magíster en Ciencias de la Ingeniería de la Pontificia Universidad Católica de Chile (UC). Además, es ingeniero civil en Computación, UC.  Se desempeña como profesor instructor del Departamento de Ciencia de la Computación de la Escuela de Ingeniería UC. Su área principal de trabajo es la docencia y el desarrollo de técnicas de visualización.

Iván Lillo
Iván Lillo

Doctor Pontificia Universidad Católica de Chile

Iván Lillo es doctor en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile (UC). Además tiene un Magíster en Ciencias de la Ingeniería, UC, y es ingeniero civil electricista, UC. Se desempeña como profesor instructor del Departamento de Ciencia de la Computación, Escuela de Ingeniería de la UC.

Ventajas

Prestigio UC

La Pontificia Universidad Católica de Chile posee más de 120 años educando y formando a los líderes de nuestro país. El prestigio UC es reconocido esencialmente por la calidad de sus docentes como por su excelente sistema de enseñanza, los cuales la han transformado en la universidad número uno del país y la mejor universidad de habla hispana en Latinoamérica.

Profesores de Clase Mundial

Nuestro proceso educativo es apoyado y guiado por la excelencia, el sello y el prestigio de los académicos de la Pontificia Universidad Católica de Chile, formados en las mejores universidades a nivel mundial.

Moderno modelo pedagógico

Contamos con una plataforma interactiva, con la última tecnología en educación a distancia, que te permitirá vivir la experiencia del aprendizaje en línea: Acceso a clases en vivo y constante interacción en foros, con académicos y tutores.

Flexibilidad

Tenemos diversos programas académicos que impartimos con un exclusivo e innovador sistema de aprendizaje, enfocado en la flexibilidad y adaptado a tus necesidades de tiempo y espacio, permitiendo que puedas estudiar donde quieras y cuando quieras.

Programas online

Somos un programa de perfeccionamiento profesional 100% online creado por la Pontificia Universidad Católica de Chile, orientado a actualizar tus conocimientos y entregarte nuevas herramientas y habilidades que te permitirán mejorar, ampliar e incluso transformar tu carrera profesional.

Requisitos

Para postular a este programa de Clase Ejecutiva UC debes cumplir los siguientes requisitos:

  • Título profesional universitario o título de egresado de instituto profesional o centro de formación técnica.
  • Se recomienda contar con conocimientos básicos de programación, específicamente en lenguaje Python. En particular, debe ser capaz de utilizar controles de flujo, distintos tipos de datos y funciones, y diccionarios con Python.

Se sugiere contar con un dispositivo compatible, navegadores web actualizados, conexión a Internet estable, sistema operativo compatible, capacidad de reproducción multimedia, cámara y micrófono.




Inversión

Precios

Precio :
USD $2.400

Matricúlate ahora y obtén un
35% dto.

(Precio final USD $1.560)

Matricúlate Aquí

Medios de pagos Chile

  • 12 cuotas tarjeta de crédito sin interés para nuestros diplomados y 3 cuotas tarjeta de crédito sin interés para nuestros cursos. En caso de existir interés, este será generado específicamente por su banco y no por Clase Ejecutiva UC.
  • Transferencia bancaria.

Medios de pagos internacional

  • Pago al contado a través de transferencia bancaria
  • Pago en cuotas para nuestros diplomados a través de cuponera electrónica (*)
  • Pago a través de Paypal

(*) Cuponera electrónica: Sistema de pago en cuotas, sin interés.

 

Clase Ejecutiva UC

Certificados apostillados

Una de las características más importantes de los títulos emitidos por la Pontificia Universidad Católica de Chile es que pueden ser apostillados gracias al Convenio de la Apostilla de la Haya. La Apostilla es una certificación única que permite agilizar el proceso de acreditación y certificación de títulos o documentos extranjeros en algún país miembro del Convenio de la Apostilla. Los documentos emitidos en Chile para ser utilizados en un país miembro del Convenio de la Apostilla que hayan sido certificados mediante una Apostilla, deberán ser reconocidos en cualquier otro país del convenio sin necesidad de otro tipo de certificación. Más información sobre el proceso de Apostilla en http://apostilla.gob.cl. El certificado del curso es apostillable. Sin embargo, la Clase Ejecutiva UC no se hace parte de la gestión de apostillarlo.

Un día en Clase Ejecutiva UC